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Lecture 5

• Limits of sequences (continued)

• Functions



Theorem (Limits and inequalities) – started last week

Suppose lim
𝑛→∞

𝑎𝑛 = 𝐴, lim
𝑛→∞

𝑏𝑛 = 𝐵 and there exists k such that for 

every n>k, 𝑎𝑛 ≤ 𝑏𝑛. Then 𝐴 ≤ 𝐵. (The limit preserves inequality).

Proof. (by contradiction). Suppose to the contrary, 𝐴 > 𝐵. We put 

𝜀 =
𝐴−𝐵

2
. Since 𝐴 > 𝐵, 𝜀 > 0 as required.

There exists 𝑝𝑎 such that for every 𝑛 > 𝑝𝑎, 𝑎𝑛 − 𝐴 < 𝜀. This 

means −𝜀 < 𝑎𝑛 − 𝐴 < 𝜀. Since 𝜀 =
𝐴−𝐵

2
we get 𝑎𝑛 > 𝐴 −

𝐴−𝐵

2
= 

𝐴+𝐵

2
. 

There exists also 𝑝𝑏 such that for every 𝑛 > 𝑝𝑏, 𝑏𝑛 − 𝐵 < 𝜀 𝑏𝑛 <
𝐴+𝐵

2
. Putting  𝑝 = max(𝑝𝑎, 𝑝𝑏) we have 𝑎𝑛 >

𝐴+𝐵

2
> 𝑏𝑛, in short 

𝑎𝑛 > 𝑏𝑛 for every 𝑛 > 𝑝. This means that for every 𝑛 > max(𝑘, 𝑝)
we have both 𝑎𝑛 ≤ 𝑏𝑛 and 𝑎𝑛 > 𝑏𝑛 − a contradiction. QED



Theorem (Sandwich theorem, squeeze lemma)

Consider sequences 𝑎𝑛, 𝑏𝑛 and 𝑐𝑛 such that: lim
𝑛→∞

𝑏𝑛 = 𝐿 and

lim
𝑛→∞

𝑐𝑛 = 𝐿 and there exists k such that for every n>k, 𝑏𝑛 ≤ 𝑎𝑛 ≤

𝑐𝑛. Then the sequence an is convergent and lim
𝑛→∞

𝑎𝑛 = 𝐿.

Proof. For every 𝜀 > 0 we can choose 𝑝 (good for both sequences 

𝑐𝑛 and 𝑏𝑛) such that for every 𝑛 > 𝑝, 𝑐𝑛 − 𝐿 < 𝜀 and 𝑏𝑛 − 𝐿 <
𝜀. This guarantees that for every 𝑛 > 𝑝

𝐿 − 𝜀 < 𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝑐𝑛 < 𝐿 + 𝜀, i.e., 𝑎𝑛 − 𝐿 < . QED

(the graph from Wikipedia)



This theorem is incredibly useful. There are tons of sequences 

whose limits cannot be calculated by arithmetic operations on 

known, elementary limits and with the squeeze theorem they 

become … trivial. 

Example.

Find lim
𝑛→∞

𝑎𝑛 where 𝑎𝑛 =
sin 𝑛

𝑛
.

lim
𝑛→∞

sin 𝑛 does not exists (which is not quite trivial) but

for each n, 
−1

𝑛
≤

sin 𝑛

𝑛
≤

1

𝑛
and lim

𝑛→∞

−1

𝑛
= 0  and  lim

𝑛→∞

1

𝑛
= 0.

Hence, by squeeze lemma, lim
𝑛→∞

sin 𝑛

𝑛
= 0.



Common pitfalls.

A student is instructed to check if  a sequence xn is convergent. They 

remember vaguely “Uncle Tom said something about hamburgers”. They 

find some sequences zn and yn. Now, it may go several ways:

• zn and yn converge to the same limit so they announce proudly that xn is 

convergent. But they never bother to check if (n) zn ≤ xn ≤yn. 

LOL, score 0.

• (n) zn ≤ xn ≤yn but yn or zn is divergent. Whatever their conclusion, it 

makes no sense, LOL.

• (n) zn ≤ xn ≤yn,  zn and yn converge but to different limits. Just as the 

last one.

I’ve seen those many times and I don’t want to see them again. Or else …



Theorem.

Every convergent sequence is bounded.

Comprehension. Prove the theorem by first principles (it means 

directly from the definition of the limit).

Fact.

Not every bounded sequence is convergent. 

Comprehension. Find a divergent bounded sequence.



Theorem.

Every bounded and monotonic sequence is convergent.

Proof outline.

In the case of a nondecreasing bounded sequence (𝑎𝑛) we prove 

that 𝐿 = sup{𝑎𝑛: 𝑛 ∈ ℕ} is the limit of 𝑎𝑛. L exists because every 

bounded set of real numbers has the least upper bound. The trick 

(not very difficult) is to show that L is the limit for 𝑎𝑛.

In the same spirit, if 𝑎𝑛 is nonincreasing we take 𝐿 = inf{
}

𝑎𝑛: 𝑛 ∈
ℕ .



Theorem. (Euler)

The sequence (1 +
1

𝑛
)𝑛 is convergent.

Hint. It turns out that the sequence is increasing and bounded from 

above, hence convergent by the last theorem.

Definition.

The limit of the sequence (1 +
1

𝑛
)𝑛 is denoted by e and is called the 

Euler number. Its approximation is e=2.7182818284590452…



Definition

We say that a sequence an diverges to  iff

(∀r ∈ ℝ)(∃𝑘𝜖ℕ)(∀𝑛 > 𝑘) 𝑎𝑛>r

We denote this by lim
𝑛→∞

𝑎𝑛 = 

In a similar way we define divergence to −∞:

(∀r ∈ ℝ)(∃𝑘𝜖ℕ)(∀𝑛 > 𝑘) 𝑎𝑛<r .

So, in total, a sequence may be convergent (to a number), divergent

or divergent to (plus or minus infinity). Note that + and −∞ are 

not numbers.



Theorem (Properties of infinite limits)

• If lim
𝑛→∞

𝑎𝑛 =  then lim
𝑛→∞

1

𝑎𝑛
= 0 (vulgar and misleading 

form:
1

∞
= 0)

• If lim
𝑛→∞

𝑎𝑛 =  and (bn) is bounded from below then 

lim
𝑛→∞

(𝑎𝑛+ bn )=  (+c=)

• If lim
𝑛→∞

𝑎𝑛 =  and for every n bnc for some c>0, then 

lim
𝑛→∞

𝑎𝑛𝑏𝑛 =  (c = )

• If lim
𝑛→∞

𝑎𝑛 =  and 𝑎𝑛≤ 𝑏𝑛 for every n then lim
𝑛→∞

𝑏𝑛 =  (vm form

squeeze lemma for infinities)



Theorem

Important limits to remember:

• If a>1 then lim
𝑛→∞

𝑎𝑛 = 

• If |a|<1 then lim
𝑛→∞

𝑎𝑛 = 0

• If a>0 then lim
𝑛→∞

𝑛 𝑎 = 1

• lim
𝑛→∞

𝑛 𝑛 = 1

• lim
𝑛→∞

(1 +
1

𝑛
)𝑛 = e

• lim
𝑛→∞

𝑛 sin
1

𝑛
= lim

𝑛→∞

sin
1

𝑛
1

𝑛

= 1



FUNCTIONS

We consider functions 𝑓: 𝑋 → 𝑌 where X and Y are subsets of ℝ. 
Given a formula defining f, the largest subset X of ℝ on which the 
formula makes sense is called the natural domain of f. 

It is often convenient to choose Y = f(X). Then f is a surjection 
(onto) and Y is called the set of values for f.

For example
sin ∶ ℝ → [−1; 1], (we put 𝑌 = [−1; 1])

ln: (0;∞) →ℝ (we put 𝑋 = (0;∞))

tan ∶ℝ ∖ {𝑘𝜋 +
𝜋

2
|𝑘 ∈ ℤ} → ℝ



Definition.

A function is called constant on A, A ⊆ X, iff 

∃𝑐 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑓 𝑥 = 𝑐

Definition.

Let A ⊆ X . A function f : X → Y is called 

• increasing on A iff ∀𝑥, 𝑦 ∈ 𝐴 [𝑥 < 𝑦 ⇒ 𝑓 𝑥 < 𝑓 𝑦 ]

• nondecreasing on A iff ∀𝑥, 𝑦 ∈ 𝐴 [𝑥 < 𝑦 ⇒ 𝑓 𝑥 ≤ 𝑓 𝑦 ]

• decreasing on A iff ∀𝑥, 𝑦 ∈ 𝐴 [𝑥 < 𝑦 ⇒ 𝑓 𝑥 > 𝑓 𝑦

• nonincreasing on A iff ∀𝑥, 𝑦 ∈ 𝐴 [𝑥 < 𝑦 ⇒ 𝑓 𝑥 ≥ 𝑓 𝑦 ]

Definition.

A function 𝑓 is said to be even iff ∀𝑥 ∈ 𝐷𝑜𝑚 𝑓 𝑓 −𝑥 = 𝑓(𝑥)

A function 𝑓 is said to be odd iff ∀𝑥 ∈ 𝐷𝑜𝑚 𝑓 𝑓 −𝑥 = −𝑓(𝑥)



Example.

Sinus is increasing on every closed interval of the form 

[2k−
𝜋

2
; 2k + 

𝜋

2
] and decreasing on every closed interval of the 

form [2k+
𝜋

2
; 2k −

𝜋

2
] , where k is an integer.

The floor function,  𝑥 = the largest integer l such that l ≤ x is 

globally nondecreasing. It is constant on every interval of the 

form [k;k+1).



Example.

Consider tan x. The domain (or natural domain), of tan x is 

ℝ \ {k+
𝜋

2
|kℤ}. tan x is increasing on every interval (a,b) which 

is contained in its domain, but it is not increasing globally. (graph 

from Wikipedia).



Comprehension.

What can you say about a set A and a function f if

• f is at the same time nonincreasing and nondecreasing on A

• f is at the same time increasing and decreasing on A



Definition. (Reminder)

Given a function f : X→Y, if there exists a function g : Y→X 

such that f∘g = idY and g∘f = idX then g is called the inverse 

function for f or f-inverse and is denoted by 𝑓−1.

Fact. 

• f is the inverse for g iff g is the inverse for f.

• f is the inverse for g iff for every x∈X and y∈Y 

f(x)=y ⇔ g(y)=x

• f is invertible iff f is “one-to-one” and “onto”.



Fact. 

The graph of 𝑓−1 is the mirror reflection of the graph of 𝑓 in the 

line 𝑦 = 𝑥. (Image from Wikipedia.)



ELEMENTARY FUNCTIONS
Definition.

The set of elementary functions consists of:

• constant functions (constant on ℝ)

• id function (id(x) = x, the “do nothing” function

• trigonometric functions

• power functions (xb where b is a real number, not necessarily 

an integer)

• exponential functions (functions of the form 𝑓 𝑥 = 𝑎𝑥)

• functions obtained by arithmetic operations on elementary 

functions (sums, product, quotients …)

• compositions of elementary functions

• inverses of elementary functions



Fact. 

• Applying only addition and multiplication to constant 

functions and the identity function we get all polynomials.

• Applying division to polynomials we get rational functions.



Power functions are functions of the form 𝑓(𝑥) = 𝑥𝑎 where a is 

a constant. If a=1, 𝑥𝑎 becomes the identity function.

The image from Wikipedia



Exponential functions are functions of the form 𝑓(𝑥) = 𝑎𝑥

where a is a positive constant different from 1.

If 𝑎 > 1 then 𝑎𝑥 is increasing, otherwise it is decreasing.

The image from Wikipedia



Exponential functions should not be confused with 

power functions. 

Exponential functions have a constant base, the variable is in the 

exponent, as in 2𝑥.

In power functions the variable is in the base, the exponent is 

constant, as in 𝑥2.

Fact. (Properties of powers)

• 𝑎𝑏𝑎𝑐 = 𝑎𝑏+𝑐 , this implies 𝑎0=1 and 𝑎−𝑏 =
1

𝑎𝑏

• 𝑎𝑏
𝑐
= 𝑎𝑏𝑐

• 𝑎𝑏𝑐𝑏= 𝑎𝑐 𝑏


